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Targeted transfer of solitons in continua and lattices
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We propose a robust mechanism of targeted energy transfer along a line, as well as on a surface, in the form
of transport of coherent solitary-wave structures, driven by a moving, spatially localized external ac field
~‘‘arm’’ ! in a lossy medium. The efficiency and robustness of the mechanism are demonstrated analytically and
numerically in terms of the nonlinear Schro¨dinger ~NLS! equation, and broad regions of stable operation are
identified in the model’s parameter space. Direct simulations show that the driving arm can manipulate solitons
equally well in a lattice NLS model. A salient feature, which is revealed by simulations and explained ana-
lytically, is a resonant character of the operation of the driving arm in the lattice medium, both integer and
fractional resonances being identified. Numerical experiments also demonstrate that the same solitary-wave-
transport mechanism works well in two-dimensional lattice media.
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For dynamical models that can support solitary waves
issue of obvious interest is a possibility to coherently trans
these localized pulses, especially in a targeted way, i.e., f
an initial position to a prescribed final one. Systems in wh
this problem is important are ubiquitous~see e.g., Refs
@1,2#! in various areas, from bioenergetics to optics, and fr
catalytic reactions to nanoscale condensed matter physi

Related problems were addressed in a number of re
studies. In particular, a laser beam was used in Ref.@3# ~see
also references therein! to locally modify the catalytic activ-
ity on a reaction surface, resulting in pulling reaction fron
coherently by the laser beam, or guiding the front insid
confined region. For Hamiltonian models, recent works w
focused on resonance-type phenomena, which were dem
strated in Ref.@4# to be responsible for very sharp and sele
tive resonant transfer of energy between coupled dimer~a
donor-acceptor pair!. Another direction recently pursued i
the studies of conservative systems is blocking, routing,
channeling of small-amplitude mobile discrete solitons by
array of large-amplitude strongly localized immobile on
@5#.

In this work, we aim to explore a different but somewh
related possibility to manipulate solitons, which can be re
ized in a variety of physical systems. We will consider
model of a manipulating arm in the form of an ac drivin
force, localized at a moving spatial spot, with the object
to transfer a solitary pulse from an initial position to a targ
spot, in one- and two-dimensional~1D and 2D! cases. Pos-
sibilities to control the surface catalytic activity by las
beams@3#, or affect local properties of a surface by the tip
a scanning tunneling microscope@6# are particular example
of a broad spectrum of systems where this scheme ca
implemented. Other examples are the use of a transv
laser beam to switch spatial solitons in optical wavegui
@7#, and the use of narrow electron beams for sensing sol
states in long Josephson junctions@8#. The model considered
in the present work may also be a step in the design
micromachines using laser beams as manipulating tools@9#.
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We will consider this possibility in a context that include
such ubiquitous features as dispersion, nonlinearity, and l
leading through their interplay to the existence of solito
that may be supported by the ac drive. A fundamental mo
incorporating all these features is a damped nonlinear Sc¨-
dinger ~NLS! equation, in both its continuum@10# and dis-
crete @11# versions. The model will also include a spatial
localizedmobile ac driving force. The most straightforwar
experimental implementation of such a drive can be provid
for by a laser or electron beam with a temporally modula
intensity. A continuum version of the model incorporatin
these ingredients is

iut1~1/2!uxx1uuu2u52 igu1 iGsech@x2j~ t !#exp~ i t /2!.
~1!

Here, g.0 is the loss coefficient, the frequency of the
drive is normalized to be 1/2, andG is the strength of the
sech-localized drive. The functionj(t) determines how the
object ~the soliton! is to be moved from an initial position
j in , to the final one,jfin ; for instance,

j~ t !5~1/2!@~j in1jfin!1~jfin2j in!tanht#, ~2!

wheret[et ande is a small parameter setting the tempo
scale of the arm’s action. The model based on Eq.~1! ne-
glects depletion of the driving field and its intrinsic spect
structure. For the actual sizes of the driven objects and sm
distances they should be moved across, both these ass
tions can be easily justified.

The pulse dragged by the arm is sought for as a the
perturbed NLS soliton,

usol~x,t !5h sech@h~x2z~ t !#exp@ if~ t !1 i ż$x2z~ t !%#,
~3!

whereh, f(t), and z(t) are its amplitude, phase, and th
position of its center, the overdot standing for the time d
rivative. In the first approximation, the soliton’s pha
©2002 The American Physical Society01-1
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evolves according to the unperturbed equationdf/dt5(h2

1 ż2)/2. Note that the choice of the arm’s width in Eq.~1!
implies that the dragged soliton hash.1. As we expect the
soliton’s positionz(t) to follow the slow motion of the arm
which is described byj(t), we define the lagging distanc
u(t), along with a phase lagc(t),

u~ t ![z~ t !2j~ t !, c~ t ![f~ t !2t/2. ~4!

Assuming that the parametersg and G in Eq. ~1! are
small, evolution equations for the amplitude and velocity
the soliton can be derived by means of balance equat
~BEs! @12# for the soliton’s massM[*2`

1`uuu2dx52h and

momentumP[*2`
1`uux* dx52hż. In particular, BE for the

mass takes the formdh/dt522gh12hG(u/sinu)cosc,
where it was taken into account thath'1. Adding BE for
the momentum and making use of the evolution equation
the soliton’s phasef, we obtain

d2c

dt2
12e

dc

dt
522g12G

u

sinu
cosc, ~5!

d2u

dt2
1eG f1~u!

du

dt
52

d2j

dt2
2eG f1~u!

dj

dt
2G f2~u!sinc,

~6!

whereg[g/e2, G[G/e2, and

f 1~u![E
2`

1` z sinhz

cosh~z1u!cosh2z
dz,

f 2~u![E
2`

1` sinhz

cosh~z1u!cosh2z
dz.

If the arm is trying to move the soliton at a constant spe
V0[dj/dt, Eqs.~5! and~6! have two fixed-point~FP! solu-
tions with small values ofu:

c56cos21~g/G!, u57
3

2

eV0

A12g2/G2
, ~7!

which implies that a necessary condition for the existence
the driven soliton isg,G. To analyze the stability of the FP
solutions, Eqs.~5! and ~6! are linearized around them fo
infinitesimal perturbations;exp(st), that gives rise to two
equations which determine four eigenvaluess:

s212es62AG22g250, s21eGs6~2/3!AG22g250.
~8!

It follows from Eqs.~7! that the FP~7! with the uppersign
~i.e., negativeu) is a stable spiral, while the other solution
a saddle point. Hence, the stable state corresponds to
soliton trailing behind the arm, while the soliton pushe
ahead of the arm is predicted to be unstable.

As is illustrated by Fig. 1, in direct simulations of th
systems~1! and~2! we could easily observe, for very differ
ent values of the parameters, that the soliton is captured
01560
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the arm and dragged by it very robustly, even if the init
separation between the soliton and the arm is consider
@Fig. 1~c!#. As it is seen in Fig. 1~b!, at the initial and final
stages of the simulation, when the arm is quiescent, the s
ton is at the same position as the arm~as predicted above!; at
the intermediate stage, when the arm moves at an appr
mately constant velocity, more careful analysis of the n
merical data demonstrates that the soliton is slightly lagg
behind the arm as expected. Despite the approximate na
of the theoretical calculation and the fact that the speed
the arm is not really constant, fairly good agreement is
tained between the theoretical~0.888! and numerical~0.792!
values of the lag in Fig. 1~c!.

In accordance with the prediction of the perturbati
theory, the simulations demonstrate that the arm can sup
and drag the soliton in the lossy medium if its strengthG
exceeds a minimum valueGmin ; for instance,Gmin'0.05 if
g51; equivalently, for givenG the loss constant must b
smaller than a certain maximum valuegmax; for example,
gmax'1.24 if G51. The numerical results also show that t
soliton-transfer regime loses its stability ifG exceeds a cer-
tain maximumvalueGmax. In this case, the soliton does no
follow the arm; instead its profile steepens and it em
wakes of radiation. For instance,Gmax(g51)'2.96. For
givenG, a related stability condition is thatg must exceed a
minimum value gcr ; for example,gcr(G51)'0.42. Thus,
the stable transfer regime occurs in an intervalGmin,G
,Gmax for fixed g, or gmin,g,gmax for fixed G.

The same transport problem was also studied for the
crete version of Eq.~1!,

i ~dun /dt!1~1/2!D2un1uunu2un

52 igun1 iG sech@nh2j~ t !#exp~ i t /2!, ~9!

FIG. 1. ~a! Gray-scale plot showing the evolution of the fie
intensity uu(x,t)u2 in the driven solitons in the (x,t) plane. ~b!
Trajectories of the centers of the soliton~solid line! and driving arm
~dashed line! when the soliton and the arm are initially centered
the same place, withj in5z(t50)550, or ~c! at different places,
with j in560, z(t50)550 @see the lower inset of~c!#. The inset of
panel~b! shows a detail of the transport process indicating the
between the preceding arm and the following soliton. The para
eters areg51, G51.1, ande5p/20, j in550, andjfin570.
1-2
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where h is the spacing of the lattice, andD2un[(un11
1un2122un)/h2 accounts for the coupling between the a
jacent sites. In the discrete case, which is relevant to a n
ber of contexts such as optical lattices in Bose-Einstein c
densates~see, e.g., Ref.@13#! and coupled arrays of optica
waveguides@14#, stable transfer of the discrete soliton by t
arm was found too. As is well known@15# ~see also Ref.
@11#!, in nonintegrable dynamical lattices a soliton gene
cally encounters a potential-energy~Peierls-Nabarro! barrier.
Accordingly, the motion of the driven discrete soliton r
sembles the saltatory propagation of ‘‘lurching waves’’@16#.
Nevertheless, it relaxes to the prescribed target position e
if the discreteness isvery strong, as is seen in Fig. 2~a!. This
result is in contrast with the well-known phenomenon
propagation failure@15# in the case of the free motion o
solitons in lattices.

Another noteworthy feature of the discrete problem is o
served if the amplitude of the pulse delivered to the tar
position is considered vs the lattice spacingh, to quantify the
effects of discreteness. Peaks in Fig. 2~b! clearly indicate the
presence of a resonance mechanism affecting the pulse t
port in the lattice. In fact, this mechanism was predic
analytically and numerically in a number of theoretic
works @17# and observed experimentally in lattices@18# and
quasilattices~periodically modulated continua! @19#. Namely,
the lattice spacingh and a given driving-arm’s velocityV0
define the frequency 2pV0 /h of the periodic passage of th
lattice site by the soliton, which can resonate with the
drive’s frequencyv0. In the case when the arm moves a
cording to Eq.~2!, the nearly constant velocity of the arm

FIG. 2. ~a! Trajectories of the centers of the soliton~solid line!
and driving arm~dashed line! in the discrete model with the spacin
h52 for the same values of other parameters as in Fig. 1.~b! The
field intensity at the center of the soliton att5100 vs the lattice
spacingh.
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the intervalutu;
,e21 is V0'(e/2)(jfin2j in). Since we have

v0[1/2 in Eq.~1!, the resonance condition is

h54pV0 /m, ~10!

wherem is a positive integer~resonance order!. These reso-
nances are identified in Fig. 2~b!, except for the one corre
sponding tom51. For instance, Eq.~10! predicts them
52 resonance, in the case examined (e5p/20,jfin2j in
520), ath5p2, while the simulations reveal a resonance
h'10. In all the cases examined, withm52,3,4, . . . , arela-
tive discrepancy between the theoretically predicted and
merically found positions of the resonance was,3%, and in
most cases it was close to 1%. The residual discrepancy
be due to the finite precision the numerical experiments
the approximate nature of the resonance condition, given
the arm’s speed is not exactly constant; see Eq.~2!. Interest-
ingly, not only the resonances of integer orders, but a
fractional resonances were found, satisfying the conditioh
54pV0( l /m), with an integerlÞ1. For example, the maxi

FIG. 3. ~a! A set of contour-plot traces illustrating the evolutio
of the pulse in the 2D lattice withg5G51 and h52, which is
transferred fromxin5yin50 to the target position atxfin5yfin55.
The soliton in the eventual position is shown explicitly; obvious
it well preserves the shape.~b! The field intensity at the center o
the 2D soliton, in its final position vs the lattice spacing, cf. F
2~b!.
1-3
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mum resonant value ofh in Fig. 2~b! corresponds to the
fractional resonance atm/ l 55/9, the next one tom/ l 56/7,
and so on, with accuracy of'1%.

To further illustrate the generality and robustness of
proposed mechanism, we also examined the possibility
targeted transfer of solitons in the 2D case. In this case,
continuum NLS equation with the cubic nonlinearity is su
ject to wave collapse@10#. We focus here on the 2D NLS
lattice model with cubic nonlinearity, which readily give
rise to stable solitons, provided that the lattice spacing
ceeds a critical value@11,20#. In the latter case, Eq.~9! be-
comes

i ~dumn /dt!1~1/2!D2umn1uumnu2umn

52 igumn1 iG sech@Am21n2h2j~ t !#exp~ i t /2!,

~11!

where

D2umn[~um,n111um,n211um11,n1um21,n24um,n!/h2.

In the simulations, we started with those stable solitons
the unperturbed model, constructed by means of the New
ce

d

r-

e
d

J.
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method @20#. The discrete pulse is then transferred by t
localized arm to a predetermined destination in the 2D
tice. Results, a typical example of which is displayed in F
3~a!, are generic, in the sense that the arm always deliv
the soliton to the target point, which may be expected si
the transfer is essentially occurring in an effectively 1D w
~radially! along the lattice. Resonances similar to those fou
above in the 1D case@~Fig. 2~b!#, for the amplitude of the
transported pulses as a function ofh can also be readily
found in the 2D case, see Fig. 3~b!.

In summary, we have demonstrated a mechanism for
herent transfer of solitary waves from an original position
a specified target position. The mechanism has been dem
strated, analytically and numerically, in continuum and l
tice media, in both one and two spatial dimensions. Fa
broad parameter regions in which the mechanism is sta
were identified. In the lattice medium, the analysis and sim
lations reveal that the stable operation of the soliton-driv
arm is determined by the resonant energy transfer from
ac drive to the solitary wave, both integer and fraction
resonances being well pronounced.
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